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TEE  DYNAMICS OF SHELL 

ABSTRACT 

The exterior ballistic motion of shell is considered by the 

methods of classical mechanics. These methods prove to be powerful 

tools for a qualitative analysis of the non-linear motion of shell 

and, in certain special cases, for obtaining quantitative results 

with a minimum of computational difficulty. The solution thus ob- 

tained for the aircraft gunfire problem has proven to be especially 

usefulo 
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INTRODUCTION 

Interest in the general motion of shell with nonlinear aero- 

dynamics and dynamics has been academic until only recently. While 

the first attempt at a study of the general motion was made by Fowler 
2 

and Lock in 1922 (two years after their presentation of the first 

definitive work on the subject of linear motion ), their considerations 

showed nothing worth intensive study since they only considered non- 

linearity in the overturning moment. The experimental methods were 

too weak to disclose any good data on the Magnus effect . 

h 5 
I. L. Synge and C. H. Kebby have made similar analyses of the 

shell as a "top".  The latter reference Is extremely detailed, giving 

all possible cases for the "Fowler moment". 

Not only was the experimental evidence lacking, but also the 

practical interest in large yaw motion. For most weapons, to be effect- 

ive the shell must be kept in the small yaw region. This is a problem 

for linearized theory. Two notable exceptions to this premise are high 

angle artillery fire and bomber defense gun fire.  The first problem, 

popularized by the requirements of jungle and hill warfare, would most 

probably be best solved by avoiding large summital yaws, but this does 

not appear possible., The second problem has large yaws almost by 

definition, namely the launching of shell into crosswinds whose velocity 

is comparable to the muzzle velocity.  The second problem with its 

urgency has supplied the necessary funds and priorities for truly 

broaching the subject of large yaw. 

In 1952, L. H. Thomas considered the motion of shell as a problem 

in classical perturbation theory.  Unfortunately the heyday of classical 

techniques was at the turn of the century, and few If any present day 

ballisticians were prepared to cope with the mechanical sophistication 

of the paper. This is especially unfortunate since the classical methods 

have proven to be so powerful In handling the orbital problems of the 

astronomer, and the problems of orbits with their multiple periodicities 

are not unlike the problems of the rigid body motion of shell. 



Fortunately there is nothing about the perturbation methods of 

classical mechanics which requires a deep understanding of complicated 

notions of physics. This was stressed by Dr. Thomas in conversation 

with the author. That is, the almost-constants can be arrived at by 

either considering the canonical transformations of Hamiltonian theory, 

the conservation of energy and momentum^ or just ad hoc properties of 

the differential equations. In fact it is the latter approach which 
7 

C. H. Murphy applied so successfully to the problem at hand. 

It is the purpose of this paper to reproduce the results of Thomas 

by appealing to direct considerations of the equations of motion.  At 

the same time it is desirable to correlate the direct approach with 

the body of Hamiltonian theory so that the numerous methods of the 

astronomers may be made more available to the ballisticians„ Therefore, 

the first section Is concerned with the general theory of canonical 

transformation and secular variables. The remainder of the paper 

develops the theory of the motion of shell independently of the first 

section but with identifying references to the first section. 

A departure from Thomas1 paper is the use of the function defined 

by equation 6.5 as the fundamental motion rather than a sinusoidal 

approximation. The author prefers to make the trigonometic approxi- 

mations as late as possible In the averaging process. Sections 12, 15, 

and lk  are extensions of Thomas1 paper. 

One particular limitation of this paper is the omission of the 

effects of gravity. While this deletion is not important in the case 

of flat fire and rather desirable for the sake of clarity, there is a 

large area of Interest (Howitzer fire) in which the effects of gravity 

are of prime importance.  It is in this area that the author hopes to 

extend these methods. 

1.  HAMILTONIAN APPROXIMATION THEORY 

The basis for classical perturbation theory, and for that matter 

any approximation theory, is the study of the variation of what would 

be constants in a simpler but similar system. We shall consider two 



types of systems: a simple rigid "body with a conservative moment of 

force and additional non-conservative aerodynamic forces and moments 

of force and a compound shell with a conservative moment of force. 

For the first type we assume that everything possible has been put 

into Hamiltonian form« That is 

i± = -      ÖH/öCL.   + f. 

1.1 

4t = oB/3p1 + g± 

where the q.'s are the generalized coordinates,  p's are their conjugate 

moments. H is the Hamiltonian, and the f's and g's represent those 

forces and moments which defy a Hamiltonian formulation.  H contains 

the kinetic energy of the shell and those aerodynamic forces which are 

conservative (usually the overturning moment). 

We further assume that the effect of the f*s and g's is to produce 

a small secular change in the motion which is typified in any small 

region of time by H. This is to say. the conservative motion at any 

instant gives the frequencies and amplitudes of oscillations in the 

system while the non-conservative terms produce long term changes in 

the parameters of the conservative system. To isolate these parameters 

of the conservative system, we shall introduce new variables such that 

the coordinates are almost cyclic and hence the conjugate momenta are 

almost constant.  These new momenta will be the desired parameters. 

We make a canonical change of variables as follows: 

Let Pi = H 

P. = p.       i f  1 
11        ' 

1.2 

For a general discussion of the Hamiltonian formulation see References 
8 and 9*  These are only two of many possible references. 



We shall find that for our purposes the case with all but one 

variable's being cyclic is of particular interest. That iß 

H = H(p , . . . , p , q,). To complete the transformation we let 

P1 = G(H, P2, . . . , pn, q1) 

and define a generating function 

n        q1 

12   h  Pi + f 
i=2        -J 

which gives the transformation equations 

Pi = äF/ö^ 

Q± = öF/öP:. 

The generating function gives the following transformation for 

the new coordinates: 

IT 

Qi = % + J    ÖG//äPi  ** 1 ^ 1 
q
i 

Q1 =  |   dG/o^ dx . 

q-L Hf 

Noting that 

ÖH/äQ1 = 0 

öH/öP. = B  ,  (the Kronecker delta), 

we write the new Hamiltonian equations as 

Qj - &Ü + (äQ^ÖPj) fj + (ä^/o^) gj 

where summation is to be taken over repeated indicies. 

1.5 

8 



The new generalized coordinates are the time in the conservative 

system for i=l and the perturbations produced in the original coordinates 

(q.) "by "the introduction of the non-conservative terms.  It should be 

pointed out that no approximations have been made up to this point. 

Allowing that the non-conservative terms may be considered as small 

and hence that the Q's for i/^1 may be taken as zero and Q - t,  we 

obtain the secular equations 

P. = h. (P_, . . . , P ,t) 1.6 
l   i x 1        n 

from equations 1.5 by substituting the solution of the conservative 

system in the right hand side. A further simplification can be effected 

by replacing the right hand side by its average over a period of motion 

giving: 
t + T/2 

Pi - (l/T)  /       h. (P1, . . . ,Pn, y) dy , 1.7 

t - T/2 

the P's being assumed constant during the averaging process. T is the 

period of motion. 

Should the frequencies of motion be of particular interest, a 

suitable choice of variables would be the action-angle variables. If 

on the other hand the magnitude of the motion is of first importance, 

the roots of the energy equation would be more appropriate. The latter 

will be the case for most of the further discussion. 

The systems of the second type, mentioned at the beginning of this 

section, will be considered in the last section since, in breaking faith 

somewhat with the introduction, the development will be done in the 

Hamiltonian manner. 

2.  THE EQUATIONS OF MOTION 

As was mentioned in the introduction, the following development 

will be performed in a direct fashion, i.e. by the use of familiar 

equations of motion and simple algebraic operations thereon. Never- 

theless the development will parallel the Hamiltonian method outlined 

in section 1, and at appropriate points reference will be made to the 

preceding outline.  The object of the direct development is twofold. 



First the complicated force system is hard to identify in terms of 

generalized coordinatesj second the direct approach will be easier 

for the uninitiated to follow, while, at the same time, giving a view 

into the inner workings of the theory if continual reference is made 

to section 1 and Textbooks of classical mechanics. 

The starting place will be the equations of motion in almost 

the same form as presented in reference 10. The major difference 

is in the definitions of the aerodynamic forces and moments for which 

the axial component of the velocity is used in the reference while 

the total speed is used herein. Also we shall use the arc length of 

the trajectory for the independent variable rather than the integral 

of the axial component of the velocity .  The effects of drag and 

spin deceleration are not considered although they may be added with 

little more than an increase in bookkeeping. The effects of gravity 

are not considered, which limits the discussion to "flat fire". 

Without further discussion the equations of motion are taken to be: 

X.» = iu 4 - I  JT X 
L 2.1 

u* = iAvu/B - (V Jm + ijj k ~
2 X  - Ju k ~

2 u 

where 

T    M'  2      H 2 

X   Complex orientation of the velocity vector with respect 
to the shell axis 

u   Complex transverse angular velocity of the shell in 
radians/caliber of travel 

• d/ds 

s arc length of the trajectory in calibers 

5 angle of yaw 

i cos 8 

sin 6  | A, j 

A axial moment of inertia 

B transverse moment of inertia 

Actually, the same definitions as we use were used in the earlier but 
probably not so widespread work of Kelley and McShane, On the Motion 
of a Projectile with Small or Slowly Changing Yaw, BRL Report 446, 19^4. 

10 



h 

k   axial radius of gyration in calibers 

k?  transverse radius of gyration in calibers 

v axial spin in radians/caliber of travel 

J pd\/m 

p density of air 

d diameter of shell 

m mass of shell 

lift coefficient 

KL Magnus moment coefficient 

K, damping in pitch coefficient 

K^ static moment coefficient 

3.  THE VARIABLES H, fa  and £ 

To reach the starting place of section one, we must change the 

variables of section two into canonical variables. Although we shall 

go directly to a set of variables containing H (as in 1.5), it is 

worth while indicating the intermediate canonical variables. Using 

the definition of Eulerian angles in reference 8 with 5=9, one can 

obtain a set of canonical variables. The q of section one would be; 

Qg = fa   1j = tj p1 = PB; P2 = P2 = PJ P5 = Pj = Py •  In what follows 

we shall use the dimensionless § and v in place of P„ and P_. 

The normalization factor is Av. In this section a bar over a symbol 

represents the complex conjugate. 

We define a dimensionless energy (or Hamiltonian) 

*-| (~)2 HÜ+V . 3.1 

which is the sum of the kinetic energy of the transverse angular motion 

and the potential energy of the overturning (static) moment 

where 

S = stability factor = (Av)2/(1t-B2J^2
>"2) . 

2 
The normalization factor is (Av) /B. 

11 



We further define a dimensionless angular momentum which is the 

component of the shell's angular momentum about the velocity vector 

The variables H and JT are essentially those used by L. H. Thomas. 

Using equations 2.1, the above definitions, and some straight- 

forward algebra, one obtains the following as the equations of motion 

in the new variables: 

H' = -JHk2"
2 (2H-2V) - J^"2 (f - J) + J- JL (1 - J2) 

i"« - -(j JL + JHV
2
) Cf - i) - (JTV"

2
 - J

L
}
 

(1 ■ &2) 

i'-ijS   7(1 ■i2) (2H-2v) - ^2 + J
L 

(i_f2) • 

The radical in the right-hand member of the last equation is equal 
2 

to G of the first section multiplied by sin 6.  Of course, Z  is not a 

canonical coordinate, and a new variable 0, which is more closely related 

to the coordinate canonical to H, will be introduced in section 6. However 

Ü  will continually occur in our considerations, and a word about the use 

of the cosine of the angle of yaw in the definition of the aerodynamic 

coefficients is in order. 

It is common practice to represent the aerodynamic coefficients as 

even functions of the sine of the angle of yaw. This practice is satis- 

factory for angles less than 90 • Beyond 90 this representation gives 

the value of the coefficient for 6 to be that of l8o - o which is generally 

incorrect.  The general expression for an even function (in angle), which 

is not completely pathological, is a Fourier cosine series which, if the 

function is analytic, can be represented by a power series involving 

both even and odd powers of the cosine. Not only does the cosine appear 

as a logical variable in the dynamics but also in the aerodynamics. 

Of additional interest is the ease with which a cosine series can 

be fitted to experimental data by trignometric interpolation  and further 

the ease in converting a cosine Fourier series to a cosine power series. 

12 



The advantage of the variables H andJTis that they are constant 

for the case in which the motion is that of a top with a generalized 

overturning moment and no other forces.  However, it is just that top 

motion which makes the equations so difficult to handle. Essentially 

we now have variables with most of the high frequency top motion 

stripped out« 

It-.  THE FUNCTION f(i) 

It was noted in the last section that the radical on the right 

of the last of equations 3 A was the function G of section one mul- 

tiplied by the square of the sine of the angle of yaw. We define the 

function f(i) as 

f(i) = (1 - /) (2H - 2V) - (f - &f   . k.l 

This function dominates much of the motion of a shell in the same 

manner as the similar function dominates the theory of Abelian integrals. 

In fact if V is approximated by a truncated cosine series, f is a poly- 

nomial in Z,  and the analysis depends strongly on the theory of elliptic 

and hyperelliptic integrals. Without the use of such sophisticated 

mathematics, much can still be learned about the overall motion from the 

roots of this polynomial. 

Since the cosine of the angle of yaw must be a real quantity, It 

follows from (3.5) that the function f must be positive for any value 

of yaw the shell can assume consistently with the initial conditions. 

In particular, the yaw will oscillate between two neighboring roots 

£    and £    such that the function is positive between these two roots. 

There is of course the requirement that the cosine of a real angle 

must be of not more than unit magnitude.  In this connection it is grat- 

ifying that the function is non-positive for i of unit magitude. 

The special case of V linear in Z  corresponds to the common grav- 

itational top.  Tills case is discussed at length in reference 8 and, for 

that matter, most any text of classical mechanics. 

13 



The roots, in and I  , of f "which bound the motion are often veil 

adapted to use as secular (slowly varying) variables.  Indeed the entire 

concept of stability hangs on these roots.  In many cases it might be 

desirable to avoid the algebraic difficulties of finding roots of high 

order polynomial by carrying both the roots and H and JT as dependent 

variables. 

5.  THE ROOTS AS VARIABLES 

In this section ve shall do two things, find the differential 

equations for the roots and evaluate H and J) in terms of the roots. 

The first is necessary for using the roots as dependent variables and 

for determining the behavior of the variable 0 which will be introduced 

in the next section. The second is necessary if the roots are to be 

used exclusively as dependent variables. 

We proceed as follows: 

Let r be one of the roots of interest.  Then 

f(r) = (l-r2).(2H-V(r)) - (jT-r)2 = 0 

Differentiating this expression ve obtain , 

(5f(r)/5r)rJ = 2(f-r)J« - 2(l-r2)H' 

" 2*p) C-(i Jl + ^V,)-^-2-^!-/)] 
-2(l-r2) [-JHfcj"

2 (2H-2V(i)) - J^"2»-!) + JL(l-/)/te(J)]. 

Using f(r) = 0 and observing care in keeping Z  and r separate, one 

obtains, by eliminating terms in jZT, 

(df(r)/dr)r» = 2jl-l(§-x)   (r-i)+[2H-2V(r)J (r-i)(l+ri) 

+ [lAs(r) - IAS (£)]  (1-/) + | (1-/) ^|MJ 

+ 2kx"
2 JT (r-i)|l+ri -l(r+i)| 5.1 

((r-i)(r-i) + 2(l-r2) [v(r) - V(i)]| . + 2k2"
2 JH 

Each J is a function of £. 

Ik 



It is certainly reasonable to assume that V and S are different- 

iable.  In which case, using the mean value theorem, we can write: 

(of(r)/ör)r« = (l-/) JL (Of (r)/&r) + (r-i)C (r,Z)   , 

Where 

lim. C(r,i) is finite. 

Z —+-T 

Anticipating the next section, we define 

f(i) = (iri)U-iQ) T(£) 5.2 

where F is hounded, positive, and non-vanishing in the closed interval 

(ia, ix).  Then 

(äf(i0)/ör)   = (lri0) F  (i0) 

and 

*0 * (1-^ JL + ^    C(Vi)/*o 
,e -i 

i2  -(1-/)  JL+1V    C(V^/F1 

10 

'0    1 

where F~ and Fn are the values of F evaluated at i and i.. 
-01 o     1 

A more detailed evaluation of the derivatives of the roots would 

depend on a knowledge of the functional form, of V. For our purposes 

equations 5-3 a^e sufficient. 

The next step, as indicated at the beginning of this section, is to. 

find the functional relationship between the roots and H and_^T.  To do 

this most simply and to give the most understandable form, ve introduce 

tVo new intermediate variables.  These new variables are quite closely 

related to rather familiar concepts in exterior ballistics. In particular 

let 8_ and 5 be the angles of yaw associated with &a  and £-. .    We then 

define two new variables 

p = (1/2) (80 + 81) 

n = (1/2) (6 - 81)  . 

15 



The letters p and n are chosen for the connotation of precession and 

nutation. Here we are at variance with the majority of the literature 

in the field of exterior ballistics, but in keeping with the traditions 

of classical mechanics. That is in this paper we call nutation the 

motion involving changes in the angle of yaw and precession the 

average motion of the shell axis about the velocity vector.  In this 

sense we shall see that nutation is always more nearly associated with 

the ballistic concept of fast motion while the precession can be either 

fast or slow. 

From the two equations 

f(i0) - 0 and f(j ) = 0 

eliminate H to obtain 

1       *o ♦ 'l 

,   1 + Vi 
2      VJo 

where V"n and V, are the values of V for i and i . 

Changing variables to p and n gives 

__  cos n (l + cf)    cos p (l - cf) 

$ = 2 cos p   +    2 cos n   > 5*5 

where 

cf = Vl - h  cos p cos n (V1-V0)/(i1 - £Q)'   , 5.6 

which reduces to the usual cf in. ballistics in those cases where V is 

linear in the cosine (K is constant). Now if JÖ is the azimuth angle 

as used in Reference 8, 

0. .ÄLifcÜ 5.7 
Bsin 5 

If we consider the case of pure precession (n = 0) 

Av (l + cr) 

*;= g coi p 5.8 

For the case of statically unstable shell (0<cf<l), there are 

two precession rates, both in the same direction, one fast and one 

Slow. For the case of statically stable shell (cr>l) there are also 

16 



two rates but now of different sign as well as magnitude. For the 

case of neutrally stable shell (a  = l) there is only one rate and 

that is the vacuum rate as one would expect. 

One final observation about the rates is of interest. For p = 9° > 

there is only one possible precession rate. This motion is possible 

since the limit of a as p approaches 9° is one.    The slow motion is 

the possible one and in this case 

$ = cos2n (V1 - V0)/(^ - iQ) 

In a similar manner as for equation 5*5 we obtain: 

H = 

2 ,2 
1 + a o   1 + 0 1 f   2    -L±CJ       2   -L1CT1   1 

i J tan p (—g—) + tan n (—g—) J +.? (V"VQ)  5-9 

6.  THE UNTFORMISIWG VARIABLE 0 

In Section 3 it is noted that £  is not a canonical coordinate. 

While time (actually arc length) is the coordinate conjugate to the 

Hamiltonian, it is more convenient to introduce another variable 0 by 

the relation 

i = (l/2)(i0+i1) + (l/^Xü^) cos 0 . 6.1 

Thomas calls this variable a uniformising variable since, if I 

varies sinusoidaliy, 0 varies linearly. In any event, the transfor- 

mation absorbs much of the oscillation. 

Differentiating 6.1,   substituting in 3..h,  and rearranging terms gives 

0 " *1     ,„„.'   L Av  „/ITT?  T /T o2\   *•' /1+cos 0v  • ,1-cos 0\  ^  sin 00 = + —  Vf(i) - JL(l-i )+i0 ( 5 H^ ( 2 ) 

Using 5.2 and 5.3 we obtain 

'C(i^i)    C(i,, i)" 
6.2 of=|H v^te) sin 0 

B . v^"'   2P79 F F 0 1 

In general the presence of the i - i term in the denominator of 

the last term causes trouble when the roots are almost equal. A dis- 

cussion of this case will be given in Section 8. Fortunately for roots 

17 



which are separated sufficiently that the manner of finding the average 

of i Is important, the entire term can be disregarded.  This latter 

simplification is applicable only for the case of heavler-than-air pro- 

jectiles (see below). Since this is the case with which we are con- 

cerned, we shall use 

s   Av vW 6.3 9 -B 

as the equation of the fundamental motion. This is similar to the use 

of the approximation Q, -  t in Section 1. 

The frequency of nutation can be defined as the reciprocal of the 

time (arc length) in which 0 changes by 2n.    We call this time (arc 

length) the period, P, where 

■/• 

e_+2it 
d 0 6.k 
Av \    ?VF 

To establish under what conditions equation 6.3 is valid, we shall 

evaluate the C and F terms for £    -  Ü, = i = cos p. We shall then con- 

sider under what conditions the term Av videos p)/B dominates the term 

C(cos p,cos p)/F(cos p) Hg - i 1  . 

Now, using 5.1, 5.5, and 5.9, we obtain 

C(cos p, cos p) = 2<T I tan p (l+cr) /k  - sin p (l-cr )/k\ 

-2   2 
- 2J k  sin p cr 6.5 

- 2J k^  tan p sin p (l+cr)  /2 

Equation 6.5 may be used in detail to obtain an estimate of the size of 

C. However, in the cases which are usually of interest, we can merely 
"5     2 

say that C is of the order of magnitude of (pd /m)sin p, and hence 

C/ff -■£„! is of the order of magnitude of (pd /m)(sln p)/(sin n).  The 

comparison is then between Av-/F /B and (pd /m)(sin p)/(sln n)F. That 

is, the approximation 6.3 is invalid for n such that 

n<(pd5/m) sin p / [(A /B) F3^2 ]   . 6.6 sin 
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-2 „ 
For spin stabilized shell we may use F = 1 and \Xo    = 1 to get as 

an order of magnitude approximation 

sin n<(l/ij-S)(Av/3)  sin p 6.7 

for the.approximation 6„3 to be invalid, 

A more specific analysis along the same lines is necessary for any 

particular fin-stabilized shell, 

7=    THE FUNCTION F ■'■■■■ 

The function F, together with AV/B, determines the frequency of■the 

nutation of the shell (6.K).     If V is at most .quadratic in, £,   the nutation, 

can be expressed in-terms of elliptic, integrals.  If.V is of higher' order, 

the solution requires hyper-elliptic functions (or series expansions)i- 

It is instructive to .reduce F to a form similar to the expressions for 

the nutational frequency found.in.the usual ballistic theory,  (in view 

of our definition of nutation, the nutational frequency we shall obtain 

will be equal to the difference of the two frequencies of the usual 

ballistic theory). 

We first note that if    - '. . 

f(iQ) = f(ix) = 0'  " 

Then, by using the mean value theorem, 
2 — 

f(j) = - a/a)(i0-i)(j-j.)■  ±M£L .7.1 
u djT . 

where £  lies between £    and £    and depends on i. 

Letting 

V = V(i)  etc. 

we have p_ 

F = 1 + (2H-2V) -öS+ (1-/) ~        .  ■      7.2 
d£ d/ 

Several cases are simple enough to be of interest. First consider the 

case of small nutation. Letting n go to zero and using 7.2, 5*9^ and 5*6, 

we get the following expression for small nutation. 

1    2        ? 

F - o- + tan p  (    ) + sin p —=- 7-3 
it 
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The other special case we shall consider is that for V quadratic 
2 

in i. In particular let V = a£ + bi .  Then 

2     2   1±CT        2   1 + ff 
F = cr + tan p (—g—-)  + tan n (—^—) 

2        .     2 
cr    + tan p 

■X.     T    U 

l.a2 

—2     (1 
21 

^l  +  ^0 

7.U 

)  + 2(1 - i2) b 

8.  THE BEHAVIOR FOR SMALL MUTATION 

In developing the equations for the uniformising variable, mention 

was made that the right hand side of equation 6.2 could cause trouble. 

Such is often the case when the nutation is quite small (while a specific 

check would be required for each case, it appears that generally the 

approximation presented by 6.3 is valid for any nutation which can be 

considered sensibly different from zero.  This appears to be the case 

as long as the density of the projectile is large compared to the density 

of the resisting medium.) While the case of extremely small nutation 

presents no problem as to the choice of a proper averaging technique,, for 

completeness It Is desirable to discuss this case.  Indeed, in one sense 

at least, it is mandatory that an explanation be given as to why a per- 

turbation technique appears to break down under those conditions for 

which the perturbed variables should be changing the least. It is de- 

sirable to show that the difficulties are only in the coordinate system. 

Actually the variables H and j)  do change slowly at all times. The 

o_. ficulty is in the roots of f. When the two roots are close together, 

very small changes in the parameters of the polynomial cause proportion- 

ally much larger changes in the roots. What happens, as we see below, is 

that in certain cases the uniformising variable has limited variation, 

and the roots oscillate markedly. 

For the case of small nutation equations 5*3 and 6.2 can be approxi- 

mated by 

•: - §^ - ify °/> 
(iQ-i )' = cos 0 C/F 

where C, F, and cr are evaluated for JL = J . 
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These equations can be normalized by introducing the variables 

(i0 - i±)   ckv       7F 

8.2 
A = - FB 

dz B Av yFds * 

The normalized equations are 

dO n  sin 0 
dz 

1 _   
X 

dx 
dz ~ 

cos 9 

8.3 

A graphical representation of these equations appears in Figure 1. 

It can be seen that two types of solutions are possible:  closed paths 

around the points x = 1, 0 = (2k + —) or around the points x = -1, 

0 = (2k + ~)  j and open paths in which 0 increases indefinitely. Actually 

the variables x and 0 are not the observable quantities. What is 

observable is the change in the cosine of the yaw, this change being 

proportional to x cos 0. If we denote this quantity by y then 8.1 gives 

2% + y = o 
dz 

which by the definition of z means that the cosine of the yaw has the 

usual frequency, viz. Av VFJB. 

9.  THE SECULAR EQUATIONS 

While equations 6.3 and the first two of equations 3-k-  could be used 

their present form for machine computation, the presence of high frequency 

oscillations is a source of possible divergence of the truncation error 

in the computational techniques unless extremely small integration lnter- 
12 

vals are employed „ Further the presence of three variables upon which 

the equations depend explicitly, rules out the possibility of a geometric 

interpretation with any intuitive value. A simplification of the equations 

is therefore indicated from both the analytic and computational views. 

£1 
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To this effect ve invoke the same approximation which was used in 

obtaining equation 6.3 from 6.2, namely, the transient times are large 

compared to the nutational period. The secular equations (see 1.6) are 

obtained by averaging the dependence of the first two of equations 3.^ 

on 0 over a period of nutation. It is assumed that over this period H 

and JT are constant, The average -will depend upon the functional form 

and roots (£    and JL)  of f. 

Somewhat more specifically the modus operandi is as follows: 

ons 5A may ' be written as 

H' ■■ = ail 
H + ai2 I + a13 

P   , = a22 I + a£3 
9.1 

where the a's are functions of I  and hence of 0 and the roots of f. The 

a's are replaced by their averages 
s+P 

(i0,*j_) =|  J *(.t0,£r   0)4» 
9.2 

1 p* a(jB0, £v   0) dG 

p J u   FM'V^ 
2* 

dQ 

J.  Av 0    B'ÄV^ 
The roots (jL and &  ) are considered constant in these integrations. 

Usually the a's can be written as polynomials in i and hence as 

aiJ  ^ =aijk (fy*!*  COsk Ö 9'3 

with summation over k. 
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Therefore 

a  = a. ., b, lj   ijk k 

2n    k„ 
where r\     cos Q dQ s 

bk = 2—5  9.* 

4   vF 
Evaluation of the latter quantity involves complete elliptic integrals 

of the first and second kind when f is cubic (see next section), complete 

elliptic integrals of the first, second, and third kind when f is quartic 

and complete hyperelliptic integrals when f is of higher order. 

The final secular equations are 

H* = allkbkH+^a12kbk + al5kbk. 
9-5 

&   - a22kb/ + a23kbk ' 

where the a's and b's are functions of i0 and £  . 

We may now think of the dynamic history of the shell as being a path 

in the H, _|T plane. A shell may be defined as dynamically stable in an 

H, JT region if all paths from that region lead to the H, JT point corres- 

ponding to &~  = S-.   = 1. The region of physically consistent H and § 

(that is H and § such that f is positive for some values of Jt  in the 

interval -l<ü<l) is bounded by the curve of values of H and JT for which 

the roots are equal (n=0). Any limit points on this curve represent 

stable pure precesslonal motion. limit points inside the region rep- 

resent stable "elicyclic" motion. In those cases where the curves for , 

H' = 0 and for JT' = 0 can be obtained, the intersections of these curves 

(singular points) may be analysed and an overall description of the 

motion obtained (in the same manner as reference 7). The latter situ- 

ation is not too likely since, even if the elliptic integrals can be 

approximated, a system of three nonlinear algebraic equations must be 

considered (two for the vanishing of the derivatives and one for the 

2k 



roots of f). A more profitable line of attack would probably be 

to lay down a sufficiently dense set of numerical solutions for 

reliable inferences to be drawn about the general motion. 

However, there are many special cases in which such things as 

restricted initial conditions, etc. allow analytic approximations to be 

made and a somewhat closed solution to be obtained. 

10. THE CASE OF A CUBIC f 

For the case in which the stability factor (S) is a constant, 

(V is linear In i as in the usual gravitational top), the function 

f is a cubic polynomial in H,,  and the secular equations can be written 

in terms of complete elliptic integrals of the first and second kind. 

In fact, only one transcendental function need be used, namely E/K. 

To demonstrate this fact and to derive the detailed equations for 

the cubic case, it is convenient to use all three of equations 3.4. 

Averaging with respect to 2  is equivalent to averaging with respect 

to the uniform!sing variable 9. 

*0    » 
Z1  -  (l/p)    f "     ■£     ai 

J Vf 
10.1 

■/ 

£0 

h 

dl 

7? 

where again the roots of f are assumed to remain constant during the 

integration. 

Wow 

' f = (l  -  i2)(2H -  £/2S)  -  (JT-i)2 

= (i/2s) (j - iQ)(i - ^)(i - i2) 10>2 

SL2 = 2S(2H + 1)  - i0 - £± 

Noting that f(l) and f(-l) are negative and that since f is an odd 

order polynomial it must approach plus infinity either on the right 

(S > 0) or on the left (s < 0), we conclude that there is either a root 

25 



i > 1, S > 0 or a root Z- < ~1,  S < 0. We shall consider the case 

for S > 0 (the moment of force tends to overturn the shell). The 

other case is quite similar. 

Since we are interested in the ratio of two integrals, we may- 

neglect the factor of l/2S. Then 

„n f        r " 
^     _   ^i  10.5 

7° 
jg l   y^-i^u-i^U-^)     " 

where 

*2   >X  >i0   >Jl 

Making the substitution 

k2 = (J^-j^Vdg^) 

we get 
K 

in = (1/K)  f  (ix + (j^) sn
2u)n du 

0 

= (i/K) j^ (vV (j)A2J 

summing on j and where 

K 

*■/ 

2J sn    u    du 

Now (see reference 13) 

10. k 

10.5 

A0 = K 

A2 = k"2  (E - K) 10>6 

2j(l+k2) A      + (1-2J) A  ,       , 
AJJ^D  -     ^ g    2(3-1) 

(2j+i) r 
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   Hence, since there integrals are divided by K to form the averages, 
""n 2 
Z      is a function of £  ,  Z->, k , and E/K. 

Finally we note that, if we write for the a's in equation 9.1 

„n 
a  = c., i 
ij   ijn 

summing on n where the c's are constants, 

and we have the secular equations a functions of H, 0, i„, and i, with 

E/K as the only transcendental function. 

One further item is of interest in connection with a cubic f. That 

is the geography of the H, § plane (Figure 2). The curve which bounds 

the region of permissible motion has three parts: pure slow precession, 

pure fast precession with p less than 90 >  and pure fast precession with 

p greater than 90 • The lines for one root -  1(0 ) and for one 

root = -1 (180 ) are drawn and are seen not to intersect (the motion 

cannot oscillate between 0 and 180 unless the spin is zero). One other 

line is included. That is the line for H = V(i„), JT = iQ, Points on 

this line are those conditions which correspond to the case of an 

initially stationary shell axis. These are the initial conditions for 

shell fired from aircraft. 

11. A ONE-DIMENSIONAL EXAMPLE 

The following is given to illustrate the techniques described thus 

far. Consider the one-dimensional equation 

x" + (a + b x2)x« + x5 = 0, 

We need only define one secular function, namely 

H« (l/2)(x')2 + Wk)(xk)     , 
Which is, as usual, the sum of the kinetic and the potential energy. 

Then 

H' = - (a + bx2)(H - (l/2)x*) 

x». = -/2H - (l/2)x V 

Define two new variablea r and Q by 

x = rcos 0 

r^ = hn   . 
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p>90° 

one root = -1 (l80°) 
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initial conditions 
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H = V(i0) 

pure slow 
precession 

pure fast 
precession 

p<90° 

H, fl) PLANE 

Figure 2 
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Then  
/       2    ' 2   2 2 

G» = r V(l + cos 0)/2 - (a + br cos e)(l + cos Q) sinO cosQ 

rt = _ (l/2)(a + b r2 cos2Q)(l - cos Q)r 

This is an interesting case. If r is email we cannot ignore the 

last term in the 01 equation.  Indeed for small r the motion becomes 

over-damped. However, we 3hall start with a value of r which is large 

enough to allow dropping the second term, in the 0' equation. This is 

on the assumption that a + br is smaller than r/-<J2 

With this assumption, we let 

cos 0 = cn(u)   (en -  cosine amplitude) 

in which case the secularized r1 equation becomes 

K 
Jo o        k      f, 

(a + br en u x - acn u - ben u)du 

0 

■ = -r [a/3 + b(2E/K - l)/5 ]  . 

GEDA solutions were run for two specific cases (Figures 3 and k), 

The oscillating curve is the actual solution. The envelopes are solutions 

of the secular equation and give the amplitude of the oscillation. The 

agreement is good» 

12.  THE MUKPHY NONLINEAB TREATMENT 

7 
C. H. Murphy has been quite successful in applying the methods of 

nonlinear vibration theory to the case of shell motion. It is desirable 

to tie his methods to the methods of Hamiltonian mechanics. To do so, 

we shall consider a somewhat different form of the equations than that 

of equations 2.1, and for simplicity we shall consider nonlinearity in 

the Magnus term alone. 

We take as the fundamental equation of motion (after Murphy) 

\l' + £# - iv) A,' + (-M - m) X =  0 11.1 

With 17 = (A/B)v 
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&- JL + k2-
2 JH 

M - k2_2 JM 

T = JL " V2 JT = Tl + T2 Xl 

In these equations we have neglected the geometric nonlinearities. 

These could be added, but the algebra would become more difficult. 

We now define the variables 

H = (1/2) (X' I' - M xl) V~V2 

0 = (Ü*- XX')/2iv - XX/2 11.2 

These variables are closely related to our original definitions. One 

difference should be noted, namely, JT   = JF ^,-1. This means that a 

negative § is associated with the slow precession, and a positive <£,  with 

fast precession. 

The differential equations in terms of the new variables are 

JT' = -Jgr($ + \\/2)  + TXX 

H'   = -2<«(H + MXX/2?2)  + T[0 + Xl/2] 11.3 

(XX)«   =    (sin26)'   =+    27V2sin25 (H + sin26/8s)-(0+(sin2ö)/2)2 

Let 

V2 2 2 2 
(sin 6    - sin ö)(sin B-sin 8Q) 

(1^ + Y^f  = sin252 

(1^ - Y^f  = sin250 

12.lt 

Then 

and 

sin 8 = K^    + K^    + 2K^ cos Q 12,5 

2       =    2H  -   (IT q) f i2>6 

a 
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Using 12.5 and 12„6 in 12.2 and taking averages with respect to Q, 

by using      2jt 

(l/2rt)   /   (Kx + Y^    +  2^1^ cos Q) dO = K^ + YL^ 12.7 

0 

2* 

(l/2jt)   j    (Kx
2 + K^  + 2KXK2 cos e)

2 dQ - 1^ + K^ + ^K^^2  , 

0 

Wegel^, _W2  Xg + 7 [*1 + T2 ^2 + <i)] 

^,2 " *2,1 

(^2)i -2K£,  ^- -...__ ^     ^^_ 

where 

0^2 = 7(1 + a)/2  . 

This is Murphy's result. 

13. AIRCRAFT GUNFIRE 

In bomber defense gunfire at high altitude, stability factors are 

quite high, and the initial conditions are such that there is a large 

slow precession and practically no nutation. Two things are of interest: 

the damping of the precession when the nutation is zero and the stability 

of small nutation. We assume the stability factor is infinite which 

allows us to approximate 5.5 and 5.9 by 

JT = (cos p)/cos n 15.1 

H S (1/2) n2 

putting 12.1 into 3.^ using the relation 

cos 6 = cos p cos n + sin p sin n cos 0 , 

and keeping no terms in n in the ps equation and only linear terms in n 

in the n' equation, we get 

p' =-(JL" JTO 
Sinp 13.2 

-2        -2 1 
n' = -J k   n - J. t " (n cos p - sin p cos Q) 

The first equation has been checked against complete integrations of 

the dynamical problem, was found to give good agreement, and is being used 

in the computation of aircraft firing tables. 
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To be useful the second equation must be secularized by averaging 

the 0 term.  The final equation will be in the form 
p-, 

-2 -2 -2 i 
n1 = -J-dt ~'~ n - J k   n cos p + (l/2jt) sin p K_      J„ cosO d0 

0 
To evaluate the last term let 

J = >^ c  (cos p cos n + sin p sin n cosö) 
T   ^—<    m m=0 

v—v  /  m       m- 1 n    \ = y  c (cos p + m cos   p sm p cosö n) 

Then        2 it 

(l/2-rt)  f   J„ cos Ö dO = ^ 2, m c  cos   p sin p 13« ^ 

0 

ik.     NON-RIGID SHELL 

The Hamlltonian formulation is well adapted to the consideration 

of compound shell.  In many cases there are limitations Imposed on some 

of the degrees of freedom of the component parts. We shall consider 

one special case, that of a small mass which is constrained to move in 

a plane perpendicular to the shell axis and subject to a linear re- 

storing force centered on the shell axis.  In linearizing the problem 

we shall make extravagant use of canonical transformations in the hope 

that the repetition will engender a feeling for canonical transformations. 

Consider the situation pictured in Figure 5» The y axes are space 

fixed axes.  The x axes are fixed in the main shell body (the x axis is 

the axis of symmetry of the main shell body). The £.. and £ axes define 

the plane In which the small mass may move. The £ axis is taken in the 

plane defined by x , y .  The origin of the £axes is at a distance a from 

the center of gravity of the main shell (origin of the x and y axes)« 

The main shell body is acted upon by a moment whose potential energy 

is (i cos 0.  This is again the assumption that V is linear in £.     The 

spring has a potential energy of (l/2)K(£  + £  ).  The velocity com- 

ponents of the small mass (m) are given by 

3k 



£3>X3? 

FIGURE   5 
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V, = aO + £  - 0 cos 0  £r 

v2 = 0 (a sinO + £ cos 0) + £ 14.1 

T3 - - 0 £g Bin 0 - 0 tx 

The Hamiltonian for the system is 

H = (B/2)(02 + f  Sin20) + (A/2) (* + $  COS Ö)2 + ^ COS Ö 

.* (m/2)(yi
2 + v2

2 + v5
2) + (K/2)(^2 + C2

2)  , 

14.2 

yhere A is the axial moment of inertia of the main shell body and B the 

transverse moment of inertia. 

The five momenta conjugate to the coordinates £_,'£p, I/*, 0, and 0 

are respectively: 

Pl = mVl 

P2 = mv2 

pi|f  = A(t + 0 cos 0) 1^.3 

p    = B0 + ap    + m(;      0 + mf;  £p sin 0 0 

■j-j       2  " 2   2" 
^0 = B sin 90 + p4fcos 0 + £  sin 0 m 0 ^,-X^a.  sin e 

- £p cos 9p + (a sinO + £_ cos 0) pp 

We shall make repeated use of canonical transformations with a 

rating function of the form 

equations for this function are 

generating function of the form F( q_ ,, ,  p  ).  The transformation 

new 

OF 

new 

^"old 

OF 

old 

As a simplification in the notation only those conjugate pairs of vari- 

ables actually changed by the transformation will be written in the 

generating fundtion and in the result.  Those variables not included will 

be assumed to be subject to the identity transformation. 
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For our first.transformation we take as the generating function 

F = 0P3 + (t + fihk   , Ik.k 

which gives us two new coordinates and momenta 

lk.3 

q3 = <P 

% 
= \|f  + 0 

p3 = P0   '  P| 

p^ -Pt 

Essentially this transformation removes the spin from the momentum pj. 

We now define a second transformation with generating function 

F = sin 0 sin q, p,. - sin 9 cos q, Pg + (£-, sin 1*  + Co cos I?.)?'? 

U.6 
+ (-^cos q? + £0 sin q?) pQ 

which gives the transformation equations 

P0 = cos 0 sin q p,- - cos 0 cos q p^ 

p = sin 0 cos q p,- + sin 9 sin q Pg + (^ cos I3 - £2 
ßin qJ Py 

+ (6X sin q? + ^ cos q?) pg 

Pl = P7 sin q3 " P8 cos q3 

P2 = P7 cos q? + Pg sin q? 

q = sin 0 sin q, 
5 5 1U.7 

qg = - sin 0 cos q, 

q? = ^ sin q^ + £2 cos q^ 

Og = -£x cos q? + £0 sin q? 

This transformation introduces the direction cosines of the shell axis 

(q and q^) and the direction cosines of the vector between the center 

of force and the small mass (q„ and qo).  These direction cosines are 

for the y , y0 axes. 
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To simplify the situation, we shall consider q~ ^    „ p their 

' 2 
derivatives, and m to be small. We shall let K = mf and assume that 

the frequency of the spring (f) does not vanish as m —*-0.  Note that 

this makes p and pp second order terms.  Further we shall keep only 

up to third order terms in the Hamiltonian.  To do this note that to 

second order terms 

BO = (p - apT) sin q^ - (pg - ap0) cos q^ 

Bsin 0 0 = Pj+ ~~- +  (p - ap^) cos q^ + (p^ - apQ) sin q^. 

Therefore, to third order terms 

H = (1/2B) J (P5 - ap?) + (p6 - ap8) + p^ [ -(P5 - aP?)% + (Pg " apgjq^] 

2    2 
2%+q6      1    2  u   2  2  1,2    2v mf2,  2  2v 

+ Vk    -^-TJ   +^ Pj,  -g q^ +qT 
+2^(p7 +P8 

)+-2~(q7 +q8 } 

ill.9 

For a final transformation we shall use the generating function 

F = ^ P9 + Qg P1D + (aq5 + q?)pu + (aqg + qg)pi2 U.10 

which gives the transformation equations 

q9 = q5 

ql0 = ^6 

qxl = aq5 + q? 

\2  " aq6 + % 

p5 = P9 + apU 

p6 = p10 + apl2 

PT = Pll 

p8 = p12 

lU.ll 

This transformation changes the q„    o coordinates from a moving origin 

to a fixed origin (q  and ) 
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Now the Hamiltonian is 

r pu2 ur^ 
H  -  (1/2B)      p9  -   q1Q ~)     +  (P10 +   ^ ^)   J +  (1/2A)  p^ 

-   (M/2)   (q/ + g10
2)  +  (l/2m)   (p^ + p^2) 

+  (mf2/2)     r(gn  - aqg)2  +  (q12   - aq1Q)2J     . 

14.12 

If we let A. = cu + i(l-io 

the Hamilton equations give 

and z q,, + iq p and note that p> = Av Bv, 

iv A.' - (M/B)A. = (amf /B) (Z - aA.) 

z" + f2z = af2A. 
14.13 

Stability of this system is equivalent to requiring that the roots 

(r) of the determinant equation 

r2 - ivr - (u/B) + (a2mf2/B) 

af 

2 
amf /B 

2  „2 r + f 

0 u.u 

are pure imaginary numbers.  This will be the case (for small m) at least 

if the roots for m = 0 are imaginary (usual stability) and if the roots 

for m = 0 are not close together (resonance).  The requirement that the 

roots be pure imaginary is due to the form of the quantic polynomial 

represented by the determinant.  If any root is a + iß, there is also a 

root -a + iß, and one of these roots introduces an unstable mode. 

While a judicious guess could give equation 14.14, not all cases of 

restrained motion are as simple as the preceding.  In the more complicated 

cases, the Hamiltonian method helps to avoid errors in the formulation of 

the equations of motion. 

HARRY L. REED, JR 

6 
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AD Accession Ho. UNCLASSIFIED 

Dynamics of 
Shell 

Ballistic Research laboratories, APG 
THE DTNAMTCS OF SHELL - Harry L. Reed, Jr. 

Report Mo. 1030, October 57 

DA Proj 5B03-03-001, ORP Proj TB3-0108 
Unclassified Report 

The  exterior "ballistic motion of shell is considered by the methods of 
classical mechanics. These methods prove to he powerful tools for a Qualitative 
analysis of the non-linear motion of shell and, in certain special cases, for 
obtaining quantitative results vith a mini mum of computational difficulty. The 
solution thus obtained for the aircraft gunfire problem has proven to be especially 
useful. 
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